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Fracture statistics of torsion in glass cylinders 
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Matem#ticas, Universidad de Chile, Casilla 1420, Santiago, Chile 

This paper has adopted a theoretical viewpoint for studying fracture statistics in round bars 
subjected to torsion, and for determining the cumulative probabilities of fracture using Weibull's 
and Kies-Kittl's specific-risk functions for materials that exhibit volume and surface brittleness. 
The use of the integral equations method has allowed us to obtain the specific-risk-of-fracture 
function and, in addition, to carry out a separation between the volume part and surface part 
for materials which show both types of brittleness at the same time. Diagrams of the cumula- 
tive probability of fracture for commercial glass samples are plotted as a practical application. 
The parameters of Kies-Kittl's functions regarding torsion as well as those of Weibull's func- 
tions regarding bending are appraised employing nomograms and minimizing the chi-square, 
respectively. Dispersion of the same is determined resorting to Fisher's information matrix. The 
different forms of the statistical functions followed by the same material in the two tests are 
due to form and size influences of the crack originating the fracture. 

1. Introduction 
The statistical mechanics of fracture proposed by 
Weibull [1] is now being widely used to describe the 
fracture behaviour of brittle materials. This field of 
Materials Science has experienced a rapid growth 
owing to the reliability requirements of modern engin- 
eering. Investigation has been directed to diverse aspects 
such as the foundations of the said mechanics [2, 3]; 
the application thereof for obtaining the cumulative 
probability of fracture concerning sundry materials 
subjected to different states of stress as for instance 
biaxial [4] and multiaxial [5] states, torsion [6-9], 
bending [10]; the evaluation of Weibull's parameters 
[11, 12]; the integral equations method for getting the 
specific-risk-of-fracture function [13, 14]. The size 
effect has been verified in glass subjected to com- 
pression [15], and glass-fibre behaviour has been 
analysed under combined states of traction and tor- 
sion [16]. This work endeavours to achieve a theoreti- 
cal study of the torsion problem and of the fracture 
behaviour of commercial glass samples under tor- 
sion and flexure, determining, therefore, the cumula- 
tive probabilities of fracture, the parameters of the 
specific-risk-of-fracture function, and the dispersion 
of the same. 

2. Sta t is t ics  of  fracture through torsion 
2.1. Volume brittleness 
The cumulative probability of fracture F(e) for 
materials with volume brittleness and subjected to 
some uniaxial state of  shear stress is as follows accord- 
ing to WeibulI's theory 

F(e) -- 1 - exp - iv q~ [e(r)] dV (1) 
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where V 0 is the volume unit, V the body volume, r the 
position vector, ~ the maximum shear-stress reached 
in the material before breaking, e(r) ~< ~ the uniaxial 
stress field, and qS(e) the specific-risk-of-fracture func- 
tion. Weibull [1] has proposed the following analytical 
form for this function 

I! e - -  eLtm l" ~ e L 
q~(e) = "Co (2)  

where 30 and m are parameters depending on the 
manufacturing process of the material, while eL is the 
stress under which there is no fracture. On the other 
hand, Kies [17] has proposed an analytical form 
including parameters m, eL and es, where e s is the 
stress above which there is always fracture. That func- 
tion has been modified by Kittl [18] through the intro- 
duction of a constant K that we shall call Kittl's con- 
stant while the new specific-risk function will be called 
Kies-Kittl 's function. This function is given by the 
following expression 

{'K ( e - ~ ~ <<. e <<. e~ 
\ e s  - ~)m 

q~(~) = 0 e < eL (3) 

. ~  ~" ~> ~S 

Kittl's constant K is derived in a natural way when 
establishing the agreement between the experimental 
data and the functions theoretically obtained, and this 
constant will be explained in greater detail later. 

In accordance with the elemental theory of torsion, 
the stress field, in cylindrical coordinates, for a round 
bar exhibiting volume brittleness and L in length and 
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r in radius, may be expressed as follows 

2M 
' c (~ )  = _ ' c  ~ < ' c  - 

F /gr 3 

0 ~< ~ ~< r; 0 ~< 0 ~< 2~; 0 ~< z ~< L (4) 

where M is the torsional moment acting on the bar. 
Rewriting of Equation 1 gives 

1 1 
~('c) = In 1 - F('c) - VoIV q~('c(r))dV (5) 

If q~('c) is given by Equation 2 - i.e. using the defined 
functions method - and considering the above 
Equations 4 and 5 we obtain 

2rcLr2 "co 1 + 
~(z) = V0(m + 2) 'c m + 1 'c 

x ( 'C-- 'CLY + ' c 0  (6) 

If'c c = 0 in Equation 2, the consideration of Equations 
4 and 5 yields 

2~Lr 2 ( r ~  
('c) - V0(m + 2) ~0 (7) 

Weibull's parameters m, 'co and rc may be obtained 
from Equation 6 inasmuch as ~('c) is known from the 
tests. If'c L = 0 a Weibull diagram may be plotted, and 
the parameters m and 'co may be obtained using 
Equation 7. 

Now, if the specific-risk-of-fracture function is given 
by Equation 3 - i.e. if it is a Kies-Kittl function - 
then the consideration of Equations 4 and 5 yields 

27~Lr2 ('CLT (~)2 K 

X dr~ (8) 

If'CL = 0 in Equation 3, then Equations 4 and 5 give 

~('c) = K J~ '~s r/)m dr/ (9) 

The parameters m, 'cs and 'co may be obtained from 
Equations 8 and 9, depending on -co, using numerical 
methods. 

If  the cumulative probability of fracture is expressed 
by Equation 8, then the mean fracture-stress is 

~ 2)zLF2 ('CL) m 'CLK f:S/rL{( r/--I )m 
Vo ~ o- 1 - ('CL/'CS)r/ 

2 - -1  '~ 
r / 2 f : (1  5(-~L/rS) <)  4d<} 

x exp V0 \ ' c s /  r/-5 

- -  1 m 

x f : ( 1  { (TL/ZS)~)~d~Jdr /  (10) 

If some known analytical form is not assumed for 
q~('c) - i.e. if using the integral equations method - 
then Equations 4 and 5 allow us to obtain the follow- 

ing integral equation where q~ is the unknown function 

2~Lr 2 1 
~('c) - V0 r 2 f~ q~(r/) r/dq (11) 

This equation may be solved through simple deriva- 
tion, and its solution is 

q~('c) = Vo 1 d 
2rcLr 2 r dz ('c2~('c)) (12) 

and the application of numerical methods to function 
~('c) allows theevaluation of the function ~b('c). 

2.2. Surface brittleness 
In the case of materials with surface brittleness, 
according to Weibull's theory the cumulative prob- 
ability of fracture F('c) is given by an expression 
similar to Equation 1 and that may be written in the 
following way, as Equation 5 

l l 
~('c) = In 1 - F('c) = S00 fs q~[r(r)] dS (13) 

where So is surface unit and S is the surface of the 
material. 

In accordance with the elemental theory of torsion, 
the stress field for a round bar exhibiting surface 
brittleness and L in length and r in radius may be 
expressed as follows 

'c(~ = r )  = 'c 

0 ~< 0 ~< 2~ 0 ~< z ~< L (14) 

If ~b(z) is given by Weibull's function, namely Equation 
2, then the consideration of Equations 13 and 14 
yields 

2~Lr ('c -- zc~ m (15) 
~(~) = s--~-\ ' c0  / 

If 'CL = 0 in Equation 2, then Equations 13 and 14 
allow us to obtain 

~(~) - So ~ (16) 

Equations 15 and 16 permit the plotting of the respect- 
ive Weibull diagrams for obtaining the paramers m, 'c0 
and "c c, when 'co # 0 and 'co = 0, respectively. 

If the specific-risk function is a Kies-Kittl function 
corresponding to Equation 3, then the consideration 
of Equations 13 and 14 yields 

~(~) = 

and this Equation 17 
m, 'CL and 'cs. 

2 ~ L r K ( ' c  - "cc'] m (17) 
So \ "cs - "c / 

allows us to obtain the parameters 

When no known analytical form is assumed for 
q~('c), then the use of Equations 13 and 14 allow us to 
write the following integral equation where ~b is the 
unknown function 

Lr f2~ 2~zLr 
~('c) = s 0  q~(Od0 - So 4('c) (18) 

This equation may be solved in a trivial fashion, and 
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its solution is 

So 
( o ( r )  - 2 r c L r  ~(r) (19) 

with which the evaluation of ~b(r) is possible, as ~(z) 
is known from practical experience. 

2.3. Combined volume and surface 
brittlenesses 

In the case of torsion applied to some round bar pre- 
senting volume and surface brittlenesses, the respect- 
ive specific-risk-of-fracture functions may be obtained 
in a separate manner. Considering Equations 11 and 
18 we have 

~(~) = ~v(r) + ~s(~) 
2~zLr 2 1 

~v(r) - Vo z2 f] ~bv(r/)r/dr/ 

2~Lr 
~s('C) - - -  ~bs(r) (20) 

So 

and if we take two groups of samples with L i and 
r~, where i = 1, 2, then we obtain the following 
equations 

2~Ll r~ 1 2gLlrl 
~,(z) - Vo r2 f~ 4~v (r/) r/ dr/ + ~ q~s(Z) 

2~L2r 2 1 2~L2r 2 
~(z)  - Vo z2 fo Cv(r/lr/dr/ + ~ ~bs(z ) 

(21) 

This system has a non-trivial solution, because if 
r~ -r r 2 the associated determinant is not null, and the 
system is linearly independent. Hence the resolution of 
Equation 21 for getting ~b v and ~b s yields 

~bv(z) = 2re(r2 -- rl) ~ dr L2r2 L , r~ /  

,o(r, ) 
4s(~)  - 2~(r ,  - r2) ~ ~2(r) - ~ r 

(22) 

In this way it has been possible to separate both 
functions of the specific risk of fracture, when the 
material is exhibiting volume brittleness and surface 
brittleness at the same time. 

3. E x p e r i m e n t a l  m e t h o d s  
98 samples of commercial glass r = 0.002 m in radius 
and L = 0.300m long were used. Half  of these 
samples was subjected to a fracture test through tor- 
sion, and the other half was tested through flexure. 
The torsion arrangement included a loading disc 
R = 0.07 m in radius, a goniometer and a receptacle 
hanging on the disc, and this arrangement was 
mounted on a machine-tool lathe. Specimen holders 
made of bronze were bonded, by means of epoxy 
resin, to the ends of the specimens. This arrangement 
allowed us to axially insert one of the specimen hold- 
ers in tailstock's centre sleeve of the lathe while the 
other specimen holder was inserted in axial fashion in 
the loading disc, thus avoiding damage to the speci- 
mens during the test. The load P of fracture through 
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torsion was applied by introducing a number of small 
weights in the said loading receptacle. Upon specimen 
fracturing these weights were totalized in order to 
ascertain P. Then the maximum stress of torsional 
fracture is given by the following expression 

2PR 
r = (23) 

g r  3 

The goniometer was used to verify a linear elastic 
behaviour until fracturing, plotting a graph not shown 
herein. The flexure test was a three-point bending test 
with the load P was concentrated at the centre of 
the test span L = 0.104m. The maximum stress of 
flexural fracture is given by the following expression 

PL 
a = - -  (24) g F  3 

The experimental results were plotted in a diagram of 
the cumulative probability of fracture, for both tests. 
The said probability was determined using the follow- 
ing formula 

i - 1/2 
F(r)  = (25) 

N 

where F(r)  is the cumulative probability of  fracture, i 
is the number of samples that failed under some stress 
at most equal to z, and N is the number of the samples 
tested. 

4. Analysis of the results, and 
discussion 

Fig. 1 shows diagrams of  the cumulative probability 
of fracture for the samples tested through torsion and 
through flexure. First, let us consider the curve corre- 
sponding to torsion, located at the left-hand side of 
the graph. The experimental data were distributed in 
accordance with a Kies-Kittl  function of the specific 
risk of fracture, that is to say a function given by 
Equation 3. In order to ascertain whether these glass 
samples followed this function independently of the 
test carried out, the flexural test was also conducted. 
Thus the curve shown at the right on Fig. 1 corre- 
sponds to the experimental data supplied by the three- 
point bending test. These data followed a distribution 
in keeping with a Weibull function of  the specific risk 
of fracture, that is to say a function given by Equation 
2. This fact, namely the different fracture statistics 
followed by the same material in the torsional and 
flexural tests may be explained as follows: in the 
instance of torsion, fracturing is through shearing and 
the form and size of the crack originating the fracture 
is of reduced influence on this process and hence the 
maximum stress has a low upper limit, i.e. there 
exists a stress r s. On the other hand, in the instance of 
flexure, fracturing is through traction; then the form 
of the crack originating the fracture is very important 
and for small cracks the maximum stress at frac- 
ture increases in value; hence such stresses have a very 
large upper boundary. The reason for the difference in 
fracture statistics between torsion and flexure can not 
be due to the fact that the torsion experimental con- 
figuration would introduce stresses other than shear 
stresses. If  so these stresses would be flexure stresses 
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and in the event of becoming large then the experi- 
mental curve of torsion should exhibit some shape 
similar to that of the experimental curve of flexure, 
excepting a certain shifting due to size effect. How- 
ever, experimental findings are clearly showing that 
such an introduction of flexure stresses is null or neg- 
ligible. If the material included spherical pores instead 
of cracks, then fracture statistics followed would be a 
Weibullian one, without regard to fracturing through 
shearing or through traction. Fig. 1 shows that the 
maximum stresses of torsional fracture have upper 
and lower boundaries while in the case of flexure there 
is only a lower boundary. 

The parameters of the Kies-Kittl function of the 
specific risk of fracture through torsion were evalu- 
ated by preparing a non-dimensional nomogram. 
Rearranging Equation 8, we may write 

ln~(z) = C + ln~ ' ( r )  

In C(r) = In L(z/zL)2 Jl 1 - (~L)s)r/ r/ dr/ 

~2=Lr2(T--ELTK ] (26) 
C = l n L  Vo \ZsJ  

Now, if we plot In ~ ' (0 against In (r/rL) for several 
values of  re/rs and m we obtain a non-dimensional 
diagram. This was used to determine the respective 
values of parameter rn and constant K. In the above 
group of Equations 26 and in the construction of the 
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Figure 2 Kies -Ki t t l  func t ion ' s  n o m o g r a m  for a var iab le  s t ress-f ie ld  

in the case of  a tors ion test. This  n o m o g r a m  al lows us to ob ta in  the 

pa rame te r  m and  Ki t t l ' s  cons t an t  K. 

nomogram is to be found the justification for the 
existence of the constant K that is to multiply the 
specific-risk-of-fracture function proposed by Kies. 
The value of constant C is graphically ascertained by 
measuring the vertical distance between the horizontal 
axis of the nomogram and the horizontal axis of the 
distribution of the experimental points (see Fig. 2). 
Hence, in order that such a value of C be equal to the 
value calculated in accordance with Equation 26, it is 
necessary to introduce the constant K, whose value is 
2.00 • l 06  when the dimensions of the specimens are 
measured in metres and the stresses are expressed in 
MPa. 

The parameters of the Weibull function of the speci- 
fic risk of fracture through flexure were evaluated 
using the method of the minimum chi-square [12]. The 
minimum chi-squares are asymptotically efficient and 
squared error-consistent estimators under quite general 
conditions. Z 2 is given by 

Z2 = ~ ( k , - t F , . )  2 ~ k~ = t (27) 
i=1 7 s  i=1 

where the population is classified into r classes each 

T A B  L E  I Stat is t ical  pa r ame te r s  of  the K i e s - K i t t l  d i s t r ibu t ion  ( tors ion)  and  of  the Weibul l  d i s t r ibu t ion  (flexure) 

Tors ion  Flexure  

N o m o g r a m  ~ Z 2 m i n i m u m  Z 2 8 Z z 

m = 0.8 

r L = 7 0 , 0 M P a  

r s = 104 .0MPa 

Z~.gs,, = 3.84 

m = 0.5 

85.1 M P a  1.952 cr L = 65 M P a  97.1 M P a  

a 0 = 5 5  x 1 0 - 3 M P a  
Z~.95,2 = 5.99 

4.648 
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comprising ki elements, t is the number of trials and F~ 
is the probability of failure in the classes. The cumula- 
tive probability of fracture for a round cylinder sub- 
jected to the three-point bending test is given by the 
following expression [10] 

F(~) = 1 - exp - Vo(m + 1 ) \ 6 o /  a/aL 

,7 ) 
(28) 

where m and a0 are parameters depending on the 
manufacturing process of the material, and aL is the 
lower-limit stress under which there is no fracture. In 
view of the complex structure of the above Equation 
28 when deriving Equation 27 with respect to each one 
of the three parameters, the solution of the system to 
be solved becomes complicated. Hence it is necessary 
to programme an algorithm with backtracking in 
order to reach the minimum chi-square using the 
general Equation 27. The backtracking algorithm is 
very efficient for finding the minimum value of the 
chi-square function. One of the problems regarding 
this method is the case of a small sample, to which it 
is not applicable. Another difficulty is the choice of 
adequate classes having at least five elements each. 

The values of the parameters were indicated in Table 
I, along with the mean stress at fracture and the Z 2 of the 
distribution of probability used, for both tests, obtained 
in keeping with the methods hereinabove explained. 

The dispersion of the parameters of the cumulative- 
probability-of-fracture functions may be estimated 
through Fisher's information matrix [15]. The coef- 
ficients of the Fisher matrix are determined using the 
following relationship: 

r u = - n  aO+gO/ f(~) d~ (29) 

where r 0 is the coefficient i , j ,  n is sample size, 0 are the 
parameters, and f(~) = dF(v)/dr is the density func- 
tion of fracture probability. In view of the complex 
structure of the function of the cumulative probability 
of torsional fracture, when the specific-risk function is 
a Kies function, with zL # 0, the required calculations 
in the Fisher matrix are very cumbersome, and hence 
it becomes more convenient to use another method 
for obtaining the dispersion of the parameters; for 
instance, the Monte Carlo simulation method may be 
resorted to. 

5. Conclusions 
The problem of obtaining the specific-risk-of-fracture 
function cb(~) for the case of torsion has been com- 
pletely solved using both the defined-functions method 
and the integral-functions method, for the two instan- 
ces of volume brittleness and of surface brittleness, 
either separated or combined. In addition, the specific- 
risk-of-fracture function proposed by Kies has been 

subjected to a correction through the introduction of 
a constant K. The different fracture, statistics followed 
by the commercial-glass samples when subjected to 
torsion or to bending, are due to the influence of the 
form and size of the crack originating the fracture. 
In the case of torsion (fracture through shearing), 
the form and size are of reduced importance, which 
involves the existence of an upper-limit stress ~s, and 
the statistics followed were Kies-Kittl statistics. On 
the other hand, in the case of flexure (fracture through 
traction), the form and size of the crack are very 
important, which involves for the fracture stresses the 
existence of a very large upper-limit stress, and then 
the statistics followed are Weibull statistics. It should 
be underlined that the integral equations method is 
very important because, without assuming some known 
analytical form for the specific-risk-of-fracture func- 
tion, the same may be obtained by applying some 
numerical method to the function ~(v) which is known 
from practical experience. 
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